Copied to
clipboard

G = C6219D4order 288 = 25·32

3rd semidirect product of C62 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial

Aliases: C6219D4, C62.251C23, (C2×C6)⋊8D12, (C3×C12)⋊22D4, C6.64(C2×D12), C35(C127D4), C1212(C3⋊D4), (C22×C12)⋊10S3, (C2×C12).389D6, C43(C327D4), C6.11D123C2, C3221(C4⋊D4), (C22×C6).160D6, C222(C12⋊S3), C6.109(C4○D12), C12⋊Dic312C2, (C6×C12).291C22, (C2×C62).112C22, C2.19(C12.59D6), (C2×C6×C12)⋊8C2, (C2×C12⋊S3)⋊8C2, (C22×C4)⋊6(C3⋊S3), (C3×C6).277(C2×D4), C6.118(C2×C3⋊D4), (C2×C327D4)⋊9C2, C23.29(C2×C3⋊S3), C2.17(C2×C12⋊S3), C2.7(C2×C327D4), (C3×C6).124(C4○D4), (C2×C6).268(C22×S3), C22.56(C22×C3⋊S3), (C22×C3⋊S3).45C22, (C2×C3⋊Dic3).91C22, (C2×C4).69(C2×C3⋊S3), SmallGroup(288,787)

Series: Derived Chief Lower central Upper central

C1C62 — C6219D4
C1C3C32C3×C6C62C22×C3⋊S3C2×C12⋊S3 — C6219D4
C32C62 — C6219D4
C1C22C22×C4

Generators and relations for C6219D4
 G = < a,b,c,d | a6=b6=c4=d2=1, ab=ba, ac=ca, dad=a-1b3, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 1196 in 282 conjugacy classes, 89 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3⋊S3, C3×C6, C3×C6, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×C6, C4⋊D4, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, C62, C62, C62, C4⋊Dic3, D6⋊C4, C2×D12, C2×C3⋊D4, C22×C12, C12⋊S3, C2×C3⋊Dic3, C327D4, C6×C12, C6×C12, C22×C3⋊S3, C2×C62, C127D4, C12⋊Dic3, C6.11D12, C2×C12⋊S3, C2×C327D4, C2×C6×C12, C6219D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊S3, D12, C3⋊D4, C22×S3, C4⋊D4, C2×C3⋊S3, C2×D12, C4○D12, C2×C3⋊D4, C12⋊S3, C327D4, C22×C3⋊S3, C127D4, C2×C12⋊S3, C12.59D6, C2×C327D4, C6219D4

Smallest permutation representation of C6219D4
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 75 35 51 25 112)(2 76 36 52 26 113)(3 77 31 53 27 114)(4 78 32 54 28 109)(5 73 33 49 29 110)(6 74 34 50 30 111)(7 106 122 102 47 90)(8 107 123 97 48 85)(9 108 124 98 43 86)(10 103 125 99 44 87)(11 104 126 100 45 88)(12 105 121 101 46 89)(13 66 116 57 24 68)(14 61 117 58 19 69)(15 62 118 59 20 70)(16 63 119 60 21 71)(17 64 120 55 22 72)(18 65 115 56 23 67)(37 130 91 141 80 133)(38 131 92 142 81 134)(39 132 93 143 82 135)(40 127 94 144 83 136)(41 128 95 139 84 137)(42 129 96 140 79 138)
(1 128 56 85)(2 129 57 86)(3 130 58 87)(4 131 59 88)(5 132 60 89)(6 127 55 90)(7 74 94 22)(8 75 95 23)(9 76 96 24)(10 77 91 19)(11 78 92 20)(12 73 93 21)(13 124 52 79)(14 125 53 80)(15 126 54 81)(16 121 49 82)(17 122 50 83)(18 123 51 84)(25 137 65 97)(26 138 66 98)(27 133 61 99)(28 134 62 100)(29 135 63 101)(30 136 64 102)(31 141 69 103)(32 142 70 104)(33 143 71 105)(34 144 72 106)(35 139 67 107)(36 140 68 108)(37 117 44 114)(38 118 45 109)(39 119 46 110)(40 120 47 111)(41 115 48 112)(42 116 43 113)
(1 85)(2 122)(3 89)(4 126)(5 87)(6 124)(7 36)(8 112)(9 34)(10 110)(11 32)(12 114)(13 127)(14 82)(15 131)(16 80)(17 129)(18 84)(19 39)(20 142)(21 37)(22 140)(23 41)(24 144)(25 107)(26 47)(27 105)(28 45)(29 103)(30 43)(31 101)(33 99)(35 97)(38 62)(40 66)(42 64)(44 73)(46 77)(48 75)(49 125)(50 86)(51 123)(52 90)(53 121)(54 88)(55 79)(56 128)(57 83)(58 132)(59 81)(60 130)(61 143)(63 141)(65 139)(67 137)(68 94)(69 135)(70 92)(71 133)(72 96)(74 108)(76 106)(78 104)(91 119)(93 117)(95 115)(98 111)(100 109)(102 113)(116 136)(118 134)(120 138)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,75,35,51,25,112)(2,76,36,52,26,113)(3,77,31,53,27,114)(4,78,32,54,28,109)(5,73,33,49,29,110)(6,74,34,50,30,111)(7,106,122,102,47,90)(8,107,123,97,48,85)(9,108,124,98,43,86)(10,103,125,99,44,87)(11,104,126,100,45,88)(12,105,121,101,46,89)(13,66,116,57,24,68)(14,61,117,58,19,69)(15,62,118,59,20,70)(16,63,119,60,21,71)(17,64,120,55,22,72)(18,65,115,56,23,67)(37,130,91,141,80,133)(38,131,92,142,81,134)(39,132,93,143,82,135)(40,127,94,144,83,136)(41,128,95,139,84,137)(42,129,96,140,79,138), (1,128,56,85)(2,129,57,86)(3,130,58,87)(4,131,59,88)(5,132,60,89)(6,127,55,90)(7,74,94,22)(8,75,95,23)(9,76,96,24)(10,77,91,19)(11,78,92,20)(12,73,93,21)(13,124,52,79)(14,125,53,80)(15,126,54,81)(16,121,49,82)(17,122,50,83)(18,123,51,84)(25,137,65,97)(26,138,66,98)(27,133,61,99)(28,134,62,100)(29,135,63,101)(30,136,64,102)(31,141,69,103)(32,142,70,104)(33,143,71,105)(34,144,72,106)(35,139,67,107)(36,140,68,108)(37,117,44,114)(38,118,45,109)(39,119,46,110)(40,120,47,111)(41,115,48,112)(42,116,43,113), (1,85)(2,122)(3,89)(4,126)(5,87)(6,124)(7,36)(8,112)(9,34)(10,110)(11,32)(12,114)(13,127)(14,82)(15,131)(16,80)(17,129)(18,84)(19,39)(20,142)(21,37)(22,140)(23,41)(24,144)(25,107)(26,47)(27,105)(28,45)(29,103)(30,43)(31,101)(33,99)(35,97)(38,62)(40,66)(42,64)(44,73)(46,77)(48,75)(49,125)(50,86)(51,123)(52,90)(53,121)(54,88)(55,79)(56,128)(57,83)(58,132)(59,81)(60,130)(61,143)(63,141)(65,139)(67,137)(68,94)(69,135)(70,92)(71,133)(72,96)(74,108)(76,106)(78,104)(91,119)(93,117)(95,115)(98,111)(100,109)(102,113)(116,136)(118,134)(120,138)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,75,35,51,25,112)(2,76,36,52,26,113)(3,77,31,53,27,114)(4,78,32,54,28,109)(5,73,33,49,29,110)(6,74,34,50,30,111)(7,106,122,102,47,90)(8,107,123,97,48,85)(9,108,124,98,43,86)(10,103,125,99,44,87)(11,104,126,100,45,88)(12,105,121,101,46,89)(13,66,116,57,24,68)(14,61,117,58,19,69)(15,62,118,59,20,70)(16,63,119,60,21,71)(17,64,120,55,22,72)(18,65,115,56,23,67)(37,130,91,141,80,133)(38,131,92,142,81,134)(39,132,93,143,82,135)(40,127,94,144,83,136)(41,128,95,139,84,137)(42,129,96,140,79,138), (1,128,56,85)(2,129,57,86)(3,130,58,87)(4,131,59,88)(5,132,60,89)(6,127,55,90)(7,74,94,22)(8,75,95,23)(9,76,96,24)(10,77,91,19)(11,78,92,20)(12,73,93,21)(13,124,52,79)(14,125,53,80)(15,126,54,81)(16,121,49,82)(17,122,50,83)(18,123,51,84)(25,137,65,97)(26,138,66,98)(27,133,61,99)(28,134,62,100)(29,135,63,101)(30,136,64,102)(31,141,69,103)(32,142,70,104)(33,143,71,105)(34,144,72,106)(35,139,67,107)(36,140,68,108)(37,117,44,114)(38,118,45,109)(39,119,46,110)(40,120,47,111)(41,115,48,112)(42,116,43,113), (1,85)(2,122)(3,89)(4,126)(5,87)(6,124)(7,36)(8,112)(9,34)(10,110)(11,32)(12,114)(13,127)(14,82)(15,131)(16,80)(17,129)(18,84)(19,39)(20,142)(21,37)(22,140)(23,41)(24,144)(25,107)(26,47)(27,105)(28,45)(29,103)(30,43)(31,101)(33,99)(35,97)(38,62)(40,66)(42,64)(44,73)(46,77)(48,75)(49,125)(50,86)(51,123)(52,90)(53,121)(54,88)(55,79)(56,128)(57,83)(58,132)(59,81)(60,130)(61,143)(63,141)(65,139)(67,137)(68,94)(69,135)(70,92)(71,133)(72,96)(74,108)(76,106)(78,104)(91,119)(93,117)(95,115)(98,111)(100,109)(102,113)(116,136)(118,134)(120,138) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,75,35,51,25,112),(2,76,36,52,26,113),(3,77,31,53,27,114),(4,78,32,54,28,109),(5,73,33,49,29,110),(6,74,34,50,30,111),(7,106,122,102,47,90),(8,107,123,97,48,85),(9,108,124,98,43,86),(10,103,125,99,44,87),(11,104,126,100,45,88),(12,105,121,101,46,89),(13,66,116,57,24,68),(14,61,117,58,19,69),(15,62,118,59,20,70),(16,63,119,60,21,71),(17,64,120,55,22,72),(18,65,115,56,23,67),(37,130,91,141,80,133),(38,131,92,142,81,134),(39,132,93,143,82,135),(40,127,94,144,83,136),(41,128,95,139,84,137),(42,129,96,140,79,138)], [(1,128,56,85),(2,129,57,86),(3,130,58,87),(4,131,59,88),(5,132,60,89),(6,127,55,90),(7,74,94,22),(8,75,95,23),(9,76,96,24),(10,77,91,19),(11,78,92,20),(12,73,93,21),(13,124,52,79),(14,125,53,80),(15,126,54,81),(16,121,49,82),(17,122,50,83),(18,123,51,84),(25,137,65,97),(26,138,66,98),(27,133,61,99),(28,134,62,100),(29,135,63,101),(30,136,64,102),(31,141,69,103),(32,142,70,104),(33,143,71,105),(34,144,72,106),(35,139,67,107),(36,140,68,108),(37,117,44,114),(38,118,45,109),(39,119,46,110),(40,120,47,111),(41,115,48,112),(42,116,43,113)], [(1,85),(2,122),(3,89),(4,126),(5,87),(6,124),(7,36),(8,112),(9,34),(10,110),(11,32),(12,114),(13,127),(14,82),(15,131),(16,80),(17,129),(18,84),(19,39),(20,142),(21,37),(22,140),(23,41),(24,144),(25,107),(26,47),(27,105),(28,45),(29,103),(30,43),(31,101),(33,99),(35,97),(38,62),(40,66),(42,64),(44,73),(46,77),(48,75),(49,125),(50,86),(51,123),(52,90),(53,121),(54,88),(55,79),(56,128),(57,83),(58,132),(59,81),(60,130),(61,143),(63,141),(65,139),(67,137),(68,94),(69,135),(70,92),(71,133),(72,96),(74,108),(76,106),(78,104),(91,119),(93,117),(95,115),(98,111),(100,109),(102,113),(116,136),(118,134),(120,138)]])

78 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B4C4D4E4F6A···6AB12A···12AF
order1222222233334444446···612···12
size11112236362222222236362···22···2

78 irreducible representations

dim111111222222222
type++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6C4○D4C3⋊D4D12C4○D12
kernelC6219D4C12⋊Dic3C6.11D12C2×C12⋊S3C2×C327D4C2×C6×C12C22×C12C3×C12C62C2×C12C22×C6C3×C6C12C2×C6C6
# reps112121422842161616

Matrix representation of C6219D4 in GL4(𝔽13) generated by

01200
1100
0024
00911
,
121200
1000
0011
00120
,
3600
71000
00120
00012
,
10700
10300
00120
0011
G:=sub<GL(4,GF(13))| [0,1,0,0,12,1,0,0,0,0,2,9,0,0,4,11],[12,1,0,0,12,0,0,0,0,0,1,12,0,0,1,0],[3,7,0,0,6,10,0,0,0,0,12,0,0,0,0,12],[10,10,0,0,7,3,0,0,0,0,12,1,0,0,0,1] >;

C6219D4 in GAP, Magma, Sage, TeX

C_6^2\rtimes_{19}D_4
% in TeX

G:=Group("C6^2:19D4");
// GroupNames label

G:=SmallGroup(288,787);
// by ID

G=gap.SmallGroup(288,787);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,254,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^4=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a^-1*b^3,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽